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Preface

There is a view of Consciousness that runs on the following lines:

· The world consists of things.


· All things wear out.


· A living thing is one which can make a copy of itself before it wears out.


· Digital Processing occurs in every animal brain, and is most complex in the human brain.


· In the course of its evolution, as a side-effect, the animal brain developed the capacity to dream.  To dream is to perform complex processing of recorded perceptions.


· Our consciousness, our perception of ourselves as individuals, is entirely an artefact of the capacity to dream.  To an external observer, an individual human appears, stands up, moves about, reproduces, lies down, disappears.


· So, not cogito ergo sum, but rather cogito quamvis non sum.  Not  “I am capable of thought, so there is an I”,  but  “There is an I capable of thought, even though I do not exist”.


This notion is an explanation, both simple and complete, of the phenomenon.  And at the same time a lead​in to a terrifying problem.  It doesn't really affect our lives, knowing the underlying mechanics.  It cannot be proved, or disproved, though it has Ockham on​-side.  But it may be possible to prove that we have bumped into the limit of knowing​capacity, that our evolved equipment is insufficient ever to grasp what is going on, any more than a dog can learn to read.  To understand this problem, we must understand digital processing from the ground up, and then reflect on how to convert incoherent high-frequency digitally encoded signals into sense. 

Implications of the Digital View

Psychological

· It need not be seen as bleak, any more than the impact of a painting is reduced by the knowledge that it is made of egg‑yolk and ground‑up rock, or a play by the knowledge that it is actors in a man‑made environment.
 Shakespeare's line,  “All the world's a stage, and all the men and women merely players”, asks only for the removal of merely.  We know, love, and hate each other whatever happens.  We all share the same, flexible, script.  The painting works through its mundane pigments, and we work through the mundane buzz (of sub‑microscopic state‑changes) which occurs when information is digitally processed at speed.

Scientific

· The modern discipline of Cognitive Science is discussed in The Mechanization of the Mind, 1994, by Jean‑Pierre Dupuy, who traces its link with the earlier, somewhat discredited, Cybernetics.  Both are concerned with the similarity of the brain and the digital computer. Another work in the field is a Scientific American article of 1990 by John Searle, Is the Brain's Mind a Computer Program?.  (These are two of over a hundred citations in Dupuy).
 
While the answer to Searle's question is certainly 'No!',  the answer to Does the Brain Perform Digital Processing? is an equally certain 'Yes!'.

· It is fundamental that digital processing operates on numbers.  See Appendix A – The Representation and Control of Physical Phenomena Using Numbers.

·  It is the nature of digital processing that its operations not only manipulate numbers, but are also controlled by numbers.  See Appendix B, What a Computer Really Does.

· Digital processing is often rather vaguely seen as 'manipulating ones and zeroes'.  But we also need to understand that a number , however large, can be represented by successive ones and/or zeroes, as well as by successive decimal digits.  See Appendix C, Counting Need Not be in Tens.  The computer holds numbers exclusively as sets of ones or zeroes, since it is convenient to arrange an electrical state to be either on or off,  which can represent a single bit of information (value 1 or 0).

· By manipulating things of value 1 or 0, we can conveniently calculate and use the truth or falsity of a proposition.  For example, the proposition “The water is reasonably warm and the light is fairly bright” is either true or false, provided we have measured the numbers and know the meaning of reasonably and fairly.  It is perhaps easy to see a connection, or a choice of processing path, being made on the basis of this value.  But the road to infinite complexity was opened when it was seen that these connections can be made and unmade as part of the processing itself, which is “controlled by numbers” (see above).

Likenesses and Differences

Between the brain (B) and the computer (C)

They are alike in that when we lift the lid we see a mass of material in packages we don't understand.  Alike because both perform high-speed processing.  Different because there are collections of people who do understand the computer in all its aspects, including the raison d'être (for both B and C) of its digital processing.

Alike in that when switched off it is not possible to recover the processes taking place at switch‑off time.  Different because the computer can store information in a form that allows a restart at a particular point.  Reading and writing does this a bit for us (see Proust and the Squid , by Maryanne Wolfe), but at a “high level”, remote from the actual processing.

Alike in that both can be produced at very low cost.

Alike in that information is received, and external actions instigated, by attaching peripheral devices.  The information is processed, and the actions result.  The computer has cameras, printers, car assembly robots;   the brain has eyes, heat sensing cells, and fingers.  On both B and C, the operation of the peripherals is many orders of magnitude slower than the processing.

Consider the processing of heat signals, readily digitised by the number of heat‑sensing cells reporting (there are more the further you look below the skin). The possibilities include: fancying a dip in the pool,  putting on a parka, enjoying the warmth, resolving not to yield under torture.  Many millions of primitive instructions occur before a decision is taken and bodily movement results.  And all speculation and dreaming  may be interrupted by an emergency reflex such as the finger jerking back from the hotplate.

Appendix A – The Representation and Control of Physical Phenomena Using Numbers.

Pictures

Suppose I want to send you instructions to draw a grey square on paper.


We agree between ourselves that when you get an email from me containing just two numbers, you will draw a grey square.  The first number is the length of each side of the square, between 1 and 10.  The second is how grey it is to be, also between 1 and 10, where 1 means white and 10 means black.  You look at the first number and draw the square as best you can on white paper, taking the number as centimetres.  Then you fill it in:  if the second number is 1 you leave it white, otherwise you look at a collection of 9 squares you have to hand, each shaded in to show the greyness required for each of the nine numbers from 2 to 10.  You copy that shade as best you can, and then your job is finished.  Note that the details of your square, for example the two numbers 2 and 5, meaning a middling‑grey square 2 centimetres across, may be sent to anyone who understands the rules, and he too may make a similar square (it will not be exactly the same, because judgment is needed).


It is now easy to see that we can extend this idea to reproducing a complete black and white picture.  For example, the numbers 2 and 8, followed by another 64 numbers, is now interpreted thus:  there are to be squares 2mm across, and there are to be 8x8 of them, arranged to make a larger square of 8 rows of 8 small squares each, forming a picture of size 16 by 16 millimetres.  Each small square is to be darkened to the extent indicated by one of the 64 numbers.  Or, for a finer‑grained picture, the numbers 3 and 100, followed by  10,000 more numbers, means that there are to be squares 3 tenths of a millimetre across, each darkened by one of the 10,000 numbers, making a picture of size 30 by 30 millimetres.


It is now just a short step to extend this idea to colour.  Instead of just one number for each small square, we have three, saying how much red, green, and blue is to be used to colour in the square.


And this is what your camera does. It includes a gadget that divides the picture into squares,  works out the red, blue, and green numbers of each one, and stores those numbers in its innards.  Then there is the printer.  It takes each number and squirts out the right mix of inks onto a square on the paper.  And there is the screen.  It takes each number and lights up a square dot in the right place.


We note that, without the screen or the printer, the millions of numbers that make up your picture would be useless.  And, without the camera, it would be a laborious business to make up the numbers for a picture.


Once we have our numbers (there are about fifty million, or 5E7 for short, on each picture taken by a camera), they can be copied as many times as we wish, and each copy is exact.

Sound

Exactly the same thing happens with sound, though it is not quite as easy to understand.  The ear in fact responds to pressure.

Think of an ear under water, at a depth of ten feet.  We know the ear drum is now under pressure  (if we go too deep it will burst, but we stay ten feet down).  We hear nothing, for all is still.  But now a whale comes by, and emits its call, which we hear.  


The ear actually responds, not just to pressure, but to 

repeated changes of pressure.  

When the whale starts to call, its noise‑maker (imagine a  disc about 6 inches across) pushes out a short way, quite sharply, into the water.  This disturbs a small packet of water, which pushes against neighbouring packets and then returns to being still.  Each neighbouring packet disturbs its neighbours, and so it goes on.  In this way, a succession of impulses travels through the water, and one of them reaches our ear.


We still hear nothing, the ear reacts to the slight change of pressure, and the return to normal, but does not perceive any sound.


But now, the whale's noise‑maker starts going out and back, in she same way, once a second.The impulses travel quite quickly, so each remains distinct, and each reaches the ear at the same rate, once a second.


We still hear nothing.  The ear has little hairs in it, that wave back and forth, and register a sound only when they go back and forth quite quickly.


The whale's noise‑maker now starts going out and back, in the same way, but now fifty times a second.  The impulses still remain distinct, and reach the ear at the same rate, making it go back and forth fifty times a second.  This time, the little hairs do their job, the ear does register a sound, and we hear a hum. 


The pressure on the ear can also be experienced by a gadget that measures pressure, and we may picture such a thing next to our ear, down in the water, measuring the pressure continuously as it rises and falls briefly in response to the impulses emitted by the whale.  To make a record of these fluctuations, all we have to do is to sample that pressure from time to time.  If we want a faithful record of something changing fifty times a second, then we must take our samples much more frequently, say one thousand times a second.  We may imagine storing a few thousand numbers, each representing the pressure at a particular fraction of a second within a period of a second or two while the whale is humming.


We now confront another gadget, like the whale's noisemaker but man‑made, which moves back and forth in response to the numbers given to it.  When we put such a gadget under the water, and give it the numbers we have noted, a thousand each second, then it will emit a replica of the impulses which formed the whale's hum.


The air we breathe is like the water, in many ways.  Impulses are transmitted through packets of air, just as the transmission through water described above.  Any sound can be perceived by a microphone as a series of pressure values, and these can be noted down and later applied to a loudspeaker.  Once we have our numbers (there are about six hundred million, or 6E8 for short, on a CD), they can be copied as many times as we wish, and each copy is exact.

Properties of All Digital Representations

A digital representation is necessarily inexact, because the gadgets that convert to and from the real world are necessarily imperfect.  For example, it is still the case that the best optical microscope is better than the best digital microscope.  On the other hand, the best digital camera is now better than the best film camera.  With sound, there is still a feeling that the best vinyl equipment transcends the best CD equipment,


But, once a good digital representation has been obtained, it may be copied any number of times with no loss of quality.  Its usefulness depends completely on the quality of the gadgets at each side of the conversion process.  Such gadgets include the camera, the screen, the scanner, and the printer.


A digital representation may be readily manipulated by software,  such as Photoshop for pictures, and Audacity for sound.


Appendix B – What Computers Really Do

Introduction

The computer described below bears the same relation to your PC that an early motor‑car bears to your car.  Both work on precisely the same principles, but much detailed development has taken place.


One effect of this development is that the device is easier to use, and more difficult to wrestle with its innards.  The computer 'innards' discussed here are the mechanism of digital processing, of what has to be done, given a working set of hardware, to get a task accomplished.  The nature of the physical object, the computer itself, the 'hardware', is not discussed.


Writing programs in the way described is not to be confused with actual programming today.   If this was the only machine in the world, we'd start by writing an assembler in this code, and then a C compiler in assembler, then we could start.  These tools would translate what we write into the required primitive instructions.


If we need to understand digital processing at its lowest level, we must understand how this primitive machine works.  If you want to actually write some code for it, and run it, you can do so on your Windows PC or Mac – just ask. 


Body

The computer works by clashing together two numbers each time the clock ticks.

The nature and effect of the clash varies.  One such would be to add one number to the other.

But, nothing else happens until the clock ticks again.  When it does tick, another, maybe different, clash happens.

And so it goes on forever.

The above few words are not a simplification;  they are truly what happens.  And, indeed, that is, actually, all that happens.  Nothing else happens at all.  But, to make it interesting, more must be said.

Each of the numbers that clash together occupy a numbered location.  We picture the clock ticking, and, when it ticks, the number in location 77 is added to the number in location 112.

It is now time for a bold leap of understanding:  the nature and effect of the clash is encoded as some perfectly ordinary numbers in  perfectly ordinary locations.  Suppose the numbers 10, 77, and 112   are in locations    1000, 1001, and 1002.  When the clock ticks, the computer takes an instruction from location 1000.  It finds the number 10 there, and decodes this as “add”.  It finds 77 and 112 in the next two locations, and it looks in those locations – 77 and 112 – for the numbers to add together.  So it then adds the number in location 77 is to the number in location 112.  Next time the clock ticks it will take an instruction from location 1003.

The reader is urged to pause at this point, to take his pencil and paper, and ensure that these simple but unfamiliar facts have sunk in.  Write down the addresses 10, 77, 112, 1000, 1001, 1002 in a column on the left, then next to each, on its right, write the number contained in that location.  Set the contents of location 77 to be the number 6, and of location 112 to be 7.  Work through what happens when the clock ticks and you start executing the instruction at location 1000.  Notice that location 112 contains 13 when the instruction is complete. 

 Ask me for help if anything is unclear, remembering that 1) the daftest‑sounding questions are often the best, and 2) I shall be delighted that someone has taken an interest.

It is now clear how a computer works, but there is a little more to be said.  Firstly, accept that some locations may be mysteriously loaded with instructions before it starts, and that it will start at a particular location when it is switched on.  

But, suppose all it could do was execute an instruction and then go on to the instruction in the next location.  Then it would do each instruction exactly once, and have nothing else to do.


However, there is an instruction, just a number like any other, which says “Take the next instruction from this new location”.  Suppose locations 1000 to 1003 contain  

1000:

62

1001:

2010

1002:

77

1003:

89

These four locations contain one instruction: a code (62), and values x, y, and z.  Here x is 2010, y is 77, and z is 89.

62 is the code for “take the next instruction from location x if the number in location y is equal to the number in location z”.  So the number in 77 is compared to the number in 89. If they are the same, the next instruction is taken from 2010, otherwise from the ‘next’ location, 1004.

Ask me for help if anything is unclear, remembering that 1) the daftest‑sounding questions are often the best, and 2) I shall be delighted that someone has taken an interest.

Now, if we have a subtract instruction (code 11), and a copy instruction (code 20), in our repertoire, and have a huge number of locations available, we can perform, with these simple tools, arbitrarily complex operations.  We also have an instruction (code 21) which sets a location to zero, and another (code 12), which adds 1 to the number in a location.  And another (63), “take the next instruction from location x if the number in location y is not equal to the number in location z” , which is the opposite of 62 above.  And, finally, we have a STOP instruction, (code 77).

Begin by doing multiplication:  Let us write code to multiply whatever number is in 56 by the number in 101.  We use locations 1000 and 1001 as handy places, and put our code into location 10000, in the sure and certain hope it will be executed.

	10000:
	20, 56, 1000
	Copy the number in 56 to location 1000.

	10003:
	21, 1001
	Set location 1001 to contain zero.

	10005:
	10, 1000, 56
	Add the original value of the number in 56 to itself.  (We shall do this as many times as required to complete the multiplication).

	10008:
	12, 1001 
	Add 1 to the number in 1001 (which we earlier set to zero).

	10010:
	63, 10005, 101, 1001
	Go to 10005 above if the value in 1001 has not yet reached the required number of additions.

	10014:
	77
	STOP, we have the required answer in 56.


The reader is again urged to pause, with pencil and paper, and work through a few cycles (most of the time we are cycling between 10005 and 10010) of multiplying 733 by 1760.  

We may take it that our computer executes ten million instructions per second;  so, to multiply by 733,476 using the program above would take about one fifth of a second (3 instructions to add 1 and test, 733,476 times, about 2 million instructions.)

(While the above code is on the right lines, there are a number of errors in it, and I shall be interested to hear of suggestions for improvement).

There is more to say, but not that much, to get a proper understanding of what goes on;  and this truly is what goes on in every computer in the world.

To summarise the teaching so far:

The computer depends on ticks of a clock.  At each tick it performs a simple operation on the numbers contained in numbered locations.


The operation it performs, and the locations affected, are indicated by values in consecutive numbered locations.  These locations together form an instruction.


The instruction performed next is often the one following the instruction just done.  But some instructions cause the next instruction to be taken from another numbered location.

The reader is advised to mull over these things, to let time go by, so that the principles are thoroughly absorbed.

The missing thing is how to get numbers into and out of the machine.  We can imagine certain numbers being put in during manufacture – the computer is after all a complex bundle of electronics, we have no idea how it works, and the clever chaps who made it would not jib at putting in any numbers we wanted.  But that is not what we want.  What we want is to put in our own numbers, to write instructions to process our own information.  And then to see the results of that processing with our own eyes.


This is how we get our numbers in:

Instruction code 100 reads the next number from a packet.  

Packet is a general term for a thing that holds numbers;  we can fill it with as`many numbers as we want, and then connect it to the computer.  

The device has the job of reading each number in turn, when it is told to, by instruction 100.  If no number is ready when this instruction acts, then the computer waits, doing nothing, until a number becomes available.

In this way we get real-world information into the processing world of the computer.  Every input device has the ability to behave as a packet.  A simple example is a paper-tape reader, which provides one character, encoded as a number, each time a 100 instruction is executed.

When the computer is started, a preloaded program starts.  Its job is to read numbers arranged in a particular way, so that instructions and data can be loaded, and execution begun at a given location.

In a similar way we can get the results out into the real world.:

Another instruction, code 110, puts a number into a packet.  A simple example is a paper-tape punch, which punches a character when given its coded number. 

